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ART Neural Networks for Remote Sensing:
Vegetation Classification from Landsat

TM and Terrain Data
Gail A. Carpenter, Marin N. Gjaja, Sucharita Gopal, and Curtis E. Woodcock

Abstract—A new methodology for automatic mapping from
Landsat thematic mapper (TM) and terrain data, based on the
fuzzy ARTMAP neural network, is developed. System capabilities
are tested on a challenging remote sensing classification problem,
using spectral and terrain features for vegetation classification in
the Cleveland National Forest. After training at the pixel level,
system performance is tested at the stand level, using sites not
seen during training. Results are compared to those of maximum
likelihood classifiers, as well as back propagation neural networks
and K Nearest Neighbor algorithms. ARTMAP dynamics are
fast, stable, and scalable, overcoming common limitations of back
propagation. Best results are obtained using a hybrid system
based on a convex combination of fuzzy ARTMAP and maxi-
mum likelihood predictions. A prototype remote sensing example
introduces each aspect of data processing and fuzzy ARTMAP
classification. The example shows how the network automatically
constructs a minimal number of recognition categories to meet
accuracy criteria. A voting strategy improves prediction and
assigns confidence estimates by training the system several times
on different orderings of an input set.

I. INTRODUCTION: NEURAL

NETWORKS AND REMOTE SENSING

M APPING vegetation from satellite remote sensing data
has been an active area of research and development

over the past 20 years [1], [2], and neural networks have re-
cently been successfully applied to this problem. Data sources
that have been analyzed with neural networks include the
Landsat Multispectral Scanner (MSS) [3], Landsat Thematic
Mapper (TM) [4]–[6], SPOT (Systeme Pour l’Observation
de la Terre) [7], synthetic aperture radar (SAR) [8], [9],
Advanced Very High Resolution Radiometer (AVHRR) [10],
and multidirectional Advanced Solid-State Array Spectrora-
diometer (ASAS) [11]. Classification studies that seek to
identify landcover classes range from broad life-form cat-
egories [12] to narrow floristic classes [13]. In supervised
learning studies, input presented to a neural network during
training typically consists of spectral data [14], and output
consists of ground truth information about a vegetation class,
although multispectral image information alone has sometimes
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proven insufficient for differentiating species-level vegetation
classes. Many factors contribute to this problem, including the
effects of local topography, background reflectance from soils
or understory vegetation, high within-class variance due to the
structure and patchiness of vegetation canopies, and the lim-
itations of classification methodologies. To help differentiate
vegetation types at the species level, ancillary data have often
been used, and it is now common to use topographic variables
such as elevation, slope, and aspect in predictive models
[15]–[17]. Mapping systems that use spectral and ancillary
data typically resemble rule-based expert systems [18]–[20].

Neural networks can improve classification accuracy by
10–30% compared to conventional classification techniques.
Back propagation [21], [22], a feedforward multilayer percep-
tron [23], has been used in a large majority of these studies.
Other neural network applications employ the binary diamond
network [24], fuzzy ARTMAP [10], and ART [4]. Research
on classification methods for remote sensing, including neural
networks, also continues [3], [25]–[28]. In general, these
studies show that: a) neural network classifiers, which make
no a priori assumptions about data distributions, are able to
learn nonlinear and discontinuous data samples; b) neural net-
works can readily accommodate ancillary data such as textural
information, slope, aspect, and elevation; c) neural networks
are typically more accurate than conventional classifiers; and
d) neural network architectures are quite flexible and can be
adapted to improve performance on particular problems.

The fuzzy ARTMAP neural network is here presented as the
basis of a systematic methodology for automatic classification
of vegetation at the species level from multispectral and
ancillary data. Section II introduces the ART and ARTMAP
neural networks and Sections III–V provide self-contained
descriptions of fuzzy ART and fuzzy ARTMAP, including
a complete implementation algorithm. A prototype remote
sensing example (Section VI) illustrates fuzzy ARTMAP dy-
namics (Section VII). A series of tests then compare fuzzy
ARTMAP properties and predictions with those of a maximum
likelihood classifier, as well as K Nearest Neighbor and
back propagation algorithms (Section VIII). Inputs specify
Landsat TM and terrain data from the Cleveland National
Forest. During testing, pixel-level predictions are pooled to
give a vegetation class prediction of a small region, or site.
Test set performance statistics are measured at sites not seen
during training. Results show that the fuzzy ARTMAP neural
network performs well on a series of difficult remote sensing
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problems. Because fuzzy ARTMAP and maximum likelihood
make predictive errors at different locations, a hybrid system
can be constructed to give optimal performance. The study
defines a general purpose methodology for automatic map
construction from remote sensing and ancillary data.

II. ART AND ARTMAP NEURAL NETWORKS

Adaptive resonance theory (ART), introduced in the 1970s
as a theory of human cognitive information processing [29],
has led to an evolving series of real-time neural network
models for unsupervised and supervised category learning
and pattern recognition. These models form stable recognition
categories in response to arbitrary input sequences with either
fast or slow learning regimes. The first ART model, ART
1 [30], was an unsupervised learning system to categorize
binary input patterns. ART 1 and subsequent models added
new concepts to the theory and have been used for a wide
variety of scientific and technological applications [31]. ART
2 [32] and fuzzy ART [33] extend the binary ART 1 domain
to categorize both analog and binary input patterns.

A class of supervised network architectures, called
ARTMAP systems, self-organize arbitrary mappings from
input vectors, representing features such as spectral values and
terrain variables, to output vectors, representing predictions
such as vegetation classes or mixtures. ARTMAP’s internal
control mechanisms create stable recognition categories
of optimal size by maximizing code compression while
minimizing predictive error in an on-line setting. Binary ART 1
computations are the foundation of the first ARTMAP network
[34], which therefore learns binary maps. When fuzzy ART
replaces ART 1 in an ARTMAP system, the resulting fuzzy
ARTMAP architecture [35] rapidly learns stable mappings
between analog or binary input and output vectors. This article
demonstrates fuzzy ARTMAP performance on a difficult
remote sensing problem (Section VIII). A simplified version of
this problem (Sections VI and VII) introduces and illustrates
fuzzy ARTMAP networks and also summarizes the data
processing methods developed for remote sensing applications.

A. ART

The central feature of all ART systems is a pattern matching
process that compares the current input with a selected learned
category representation, or active hypothesis. This matching
process leads either to a resonant state that focuses attention
and triggers category learning or to a self-regulating parallel
memory search that is guaranteed to lead to a resonant state,
unless the network’s memory capacity is exceeded. If the
search ends with selection of an established category, then the
category’s learned representation may be refined to incorporate
new information from the current input. If the search ends
by selecting a previously untrained node, the ART network
establishes a new category.

Fig. 1 illustrates the ART search cycle. During ART search,
an input vector registers itself as a pattern of short-
term memory (STM) activity across level [Fig. 1(a)].
Converging and diverging adaptive filter pathways,
each weighted by a long term memory (LTM) trace, or

(a) (b)

(c) (d)

Fig. 1. ART search for anF2 code: (a) The input vectorA generates theF1
activity vectorx as it activates the orienting subsystem
. Activity x both
inhibits 
 and generates anF1 ! F2 signal. A bottom-up adaptive filter
transformsx into theF2 input vectorT, which activates the STM pattern
y acrossF2. (b) A top-down adaptive filter transformsy into the category
representation vectorV. WhereV mismatchesA, F1 registers a diminished
STM activity patternx�. The resulting reduction of total STM reduces the
total inhibitory signal fromF1 to 
. (c) If the ART matching criterion fails,

 releases a nonspecific signal that resets the STM patterny at F2. (d)
Since reset inhibitsy, it also eliminates the top-down signalV, so x can
be reinstated atF1. However, enduring traces of the prior reset allowx to
activate a different STM patterny� at F2. If the top-down signal due toy�

also mismatchesA at F1, then the search for anF2 code that satisfies the
matching criterion continues [30].

adaptive weight, transform into a net input vector to level
. The internal competitive dynamics of contrast-enhance

vector , generating a compressed activity vectoracross
. In ART 1 and fuzzy ART, strong competition selects the
node that receives the maximal input component
. Only one component of remains positive after this

choice takes place. Activation of such a winner-take-all node
selects category for the input pattern .

Activation of an node may be interpreted as “making a
hypothesis” about an input . After sending the activity
vector through top-down adaptive filter pathways, a filtered
vector becomes the input [Fig. 1(b)]. The ART
network matches the “expectation” pattern of the active
category against the current input pattern, or exemplar,. This
matching process typically changes the activity pattern ,
suppressing activation of all features in that are not con-
firmed by . The resultant pattern represents the features
to which the network “pays attention.” If the expectationis
close enough to the input , then a state of resonance occurs,
with the matched pattern defining an attentional focus. The
resonant state persists long enough for weight adaptation to
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occur; hence, the termadaptive resonancetheory. The fact that
ART networks encode only attended featuresrather than all
input features is directly responsible for ART code stability.
This characteristic differentiates ART from feedforward neural
networks, which typically encode the current vector, rather
than a matched pattern, and hence require slow learning to
avoid catastrophic forgetting of past memories.

A dimensionless parameter calledvigilance defines the
criterion of an acceptable match. Vigilance specifies what
fraction of the bottom-up input must remain in the matched

pattern in order for resonance to occur. In unsupervised
ART systems, vigilance is a fixed parameter, but in ARTMAP,
vigilance becomes an internally controlled variable. Because
vigilance then varies across learning trials, a single ARTMAP
system can encode widely differing degrees of generalization,
or code compression. Low vigilance allows broad general-
ization, coarse categories, and abstract representations. High
vigilance leads to narrow generalization, fine categories, and
specific representations. At the very high vigilance limit, cate-
gory learning reduces to exemplar learning. Varying vigilance
levels allow a single ART system to recognize both abstract
categories, such as faces and dogs, and individual faces and
dogs.

ART memory search, or hypothesis testing, begins when the
top-down expectation determines that the bottom-up input

is too novel, or unexpected, with respect to the chosen
category to satisfy the vigilance criterion. Search leads to
selection of a better recognition code to represent input
at level . An orienting subsystem controls the search
process. The orienting subsystem interacts with the attentional
subsystem [Fig. 1(b) and (c)] to enable the network to learn
about novel inputs without risking unselective forgetting of
its previous knowledge. ART 3 [36] implements parallel
distributed search as a medium-term memory (MTM) process,
as needed for distributed recognition codes.

ART search prevents associations from forming between
and if is too different from to satisfy the

vigilance criterion. The search process resetsbefore such
an association can form. If the vigilance criterion is met, then
the active category’s representation may be refined in light
of new information carried by . If the search ends upon an
uncommitted node, then begins a new category. An ART
choice parameter controls how deeply the search proceeds
before selecting an uncommitted node. In a parameter range
called theconservative limit, where is very small, an input
first selects a category whose weight vector is a subset of the
input, if such a category exists. Given such a choice, no weight
change occurs during learning; hence the name conservative
limit, since learned weights are conserved wherever possible.
As learning self-stabilizes, all inputs coded by a category
access it directly, search is automatically disengaged, and the
performance rate reaches 100% on the training set.

Many ART applications use fast learning, whereby adaptive
weights fully converge to equilibrium values in response to
each input pattern. Fast learning enables a system to adapt
quickly to inputs that occur only rarely but that may require
immediate accurate performance. Remembering many details
of an exciting movie is a typical example of fast learning. Fast

learning destabilizes the memories of feedforward, error-based
models like back propagation. When the difference between
actual output and target output defines “error,” present inputs
drive out past learning, since fast learning zeroes the error
on each input trial. This feature of back propagation restricts
its domain to off-line applications with a slow learning rate.
In addition, lacking the key feature of competition, a back
propagation system tends to average rare events with similar
frequent events that have different consequences.

Some applications benefit from afast-commit slow-recode
option that combines fast initial learning with a slower rate
of forgetting. Fast commitment retains the advantage of fast
learning, namely, the ability to respond to important distinctive
inputs that occur only rarely. Slow recoding then prevents
features in a category’s learned representation from being
erroneously altered in response to noisy or partial inputs.

Complement codingis a preprocessing step that normalizes
input patterns and solves a potential fuzzy ART category
proliferation problem [33], [37]. In neurobiological terms,
complement coding uses both on-cells and off-cells to repre-
sent an input pattern, preserving individual feature amplitudes
while normalizing the total on-cell/off-cell activity. Function-
ally, the on-cell portion of a weight vector encodes features
that are consistently present in category exemplars, while
the off-cell portion encodes features that are consistently
absent. Small weights in both on-cell and off-cell portions
of a category representation encode as “uninformative” those
features that are sometimes present and sometimes absent.
Complement coding allows a geometric interpretation of fuzzy
ART recognition categories as box-shaped regions of input
space. Tests of a prototype remote sensing example illustrate
fuzzy ART geometry with inputs that provide two TM spectral
band values at each pixel (Section VII). Thus the inputs are
two-dimensional and category boxes are rectangles.

B. ARTMAP

Each ARTMAP system includes a pair of ART modules
( and ) that create stable recognition categories in
response to arbitrary sequences of input patterns (Fig. 2). Dur-
ing supervised learning, receives a stream of patterns

and receives a stream of patterns , where
is the correct prediction given . An associative learn-

ing network and an internal controller link these modules to
make the ARTMAP system operate in real time. The controller
creates the minimal number of recognition categories,
or “hidden units,” needed to meet accuracy criteria. A minimax
learning rule enables ARTMAP to learn quickly, efficiently,
and accurately as it conjointly minimizes predictive error and
maximizes code compression. This scheme automatically links
predictive success to category size on a trial-by-trial basis
using only local operations. It works by increasing the
vigilance parameter by the minimal amount needed to
correct a predictive error at .

A baseline vigilanceparameter calibrates a min-
imum confidence level at which will accept a cho-
sen category. Lower values of allow larger categories
to form, maximizing code compression. Initially, .
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Fig. 2. ARTMAP architecture. TheARTa complement coding preprocessor
transforms theMa-vectora into the2Ma-vectorA = (a; ac) at theARTa

field F a
0

. A is the input vector to theARTa field F a
1

. Similarly, the input to
F b
1

is the2Mb-vectorB = (b;bc). WhenARTb disconfirms a prediction
of ARTa, map field inhibition induces the match tracking process. Match
tracking raises theARTa vigilance�a to just above theF a

1
-to-Fa

0
match ratio

jxaj=jAj. This triggers anARTa search which leads either to anARTa

category that correctly predictsb or to a previously uncommittedARTa

category node [34].

During training, a predictive failure at increases
just enough to trigger an search, through a feedback
control mechanism calledmatch tracking[34]. Match tracking
sacrifices the minimum amount of compression necessary to
correct the predictive error. Hypothesis testing selects a new
ART category, which focuses attention on a cluster of
input features that is better able to predict the output .
With fast learning, match tracking allows a single ARTMAP
system to learn a different prediction for a rare event than for
a cloud of similar frequent events in which it is embedded.

III. FUZZY ART DYNAMICS

This section summarizes key features of fuzzy ART dynam-
ics, with a complement coding preprocessor.

A. Field Activity Vectors

A fuzzy ART system includes a field of nodes that
represent a current input vector; a field that represents
the active code, or category; and a field that receives
both bottom-up input from and top-down input from .
Vector denotes activity, with each component in the
interval [0, 1]. With complement coding, . That
is, for ; and
for . Vector denotes

activity and denotes activity. The
number of input components and the number of category
nodes can be arbitrarily large.

B. Weight Vector

Associated with each category node
is a vector of adaptive weights, or
long-term memory (LTM) traces. Initially

(1)

Then each category isuncommitted. After a category codes
its first input, it becomescommitted. Each component
can decrease toward 0 but never increase during learning, so
weights always converge. The fuzzy ART weight vector
denotes both the bottom-up and the top-down weight vectors
of ART 1.

C. Parameters

A choice parameter , a learning rate parameter
, and a vigilance parameter determine

fuzzy ART dynamics.

D. Category Choice

For each input and node , the choice function is
defined by

(2)

where the fuzzy intersection [38] is defined by

(3)

and where the city-block norm is defined by

(4)

The system makes acategory choicewhen at most one
node can become active at a given time. The indexdenotes
the chosen category, where

(5)

If more than one is maximal, the category with the smallest
index is chosen. In particular, nodes become committed in

order . When the th category is chosen, ;
and for . The signal vector is then
equal to the th category weight vector and the activity
vector is reduced from to the matched pattern .
That is, in a choice system, the vector obeys the equation

if is inactive
if the th node is chosen.

(6)

E. Resonance or Reset

Resonanceoccurs if thematch function of
the chosen category meets the vigilance criterion

(7)

that is, by (6), when the th category becomes active, reso-
nance occurs if

(8)



312 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 35, NO. 2, MARCH 1997

Learning then ensues, as defined below.Mismatch resetoccurs
if

(9)

that is, if

(10)

Then the value of the choice function is set to 0 for the
duration of the input presentation to prevent the persistent
selection of the same category during search. A new index

represents the active category, selected by (5). The search
process continues until the chosensatisfies the matching
criterion (7). By (1), search ends if is an uncommitted node.

F. Learning

Once search ends, the weight vector learns according
to the equation

(11)

Fast learningcorresponds to setting , when the weight
vector converges to the matched vector
on each input presentation.

G. Normalization by Complement Coding

Normalization of fuzzy ART inputs prevents category pro-
liferation as many weights erode to 0 in some input regimes.
An input is normalized if constant
for all inputs . Complement coding automatically normalizes
inputs because

(12)

IV. FUZZY ART GEOMETRY

A geometric interpretation of fuzzy ART represents each
category as a box in -dimensional space, where is the
number of components of input. In the prototype remote
sensing example (Section VI), represents two TM spectral
band values for a given pixel, scaled to the interval , so

. With complement coding, then,

(13)

and each category has a geometric representation as a
rectangle . Following the form of (13), a complement-coded
weight vector can be written as

(14)

where and are two-dimensional (2-D) vectors. Vector
defines one corner of a rectangle and defines the

opposite corner [Fig. 3(a)]. The size of is

(15)

(a)

(b)

(c)

Fig. 3. Fuzzy ART category boxes, withM = 2: (a) In complement coding
form, each weight vectorwj has a geometric interpretation as a rectangleRj

with corners(uj ;vj). (b) During fast learning,RJ expands toRJ � a, the
smallest rectangle that includesRJ anda, provided thatjRJ�aj � 2(1��).
(c) With fuzzy ART fast learning and complement coding, thejth category
rectangleRj includes all those vectorsa in the unit square that have activated
categoryj without reset. The weight vectorwj equals(^ja; (_ja)c).

which is equal to the height plus the width of . In the
prototype example, each side of represents a range of
values of the corresponding TM band.

In a fast-learn fuzzy ART system, with
when is an uncommitted node.

The corners of are then and .
Hence is just the point box . Learning increases
the size of , which grows as weights shrink. Vigilance
determines the maximum size of , with ,
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as shown below. With fast learning, expands to , the
minimum box containing and [Fig. 3(b)]. The corners
of are and , where the fuzzy intersection

is defined by (3); and the fuzzy union is defined by

(16)

[38]. Hence, by (15), the size of is

(17)

However, before can expand to include , category
is reset if would be too large, according to the
vigilance criterion. With fast learning, is the smallest box
that encloses all vectorsthat have chosen categorywithout
reset.

If has dimension , the box includes the two opposing
vertices and , where the th component of each of
these vectors is

has been coded by category (18)

and

has been coded by category (19)

[Fig. 3(c)]. The size of is

(20)

and the weight vector is

(21)

as in (14) and (15). Thus

(22)

so the size of the box is

(23)

By (8), (11), and (12), the vigilance matching criterion implies
a lower bound on the size of the weight vector

(24)

By (23) and (24)

(25)

Inequality (25) shows that high vigilance leads to
small boxes while low vigilance permits large .

V. A FUZZY ARTMAP ALGORITHM

ARTMAP networks for supervised learning self-organize
mappings from input vectors, representing features such as
patient history and test results, to output vectors, representing

Fig. 4. A simplified ARTMAP network computes classification probabilities,
with jbj = 1 at an output fieldF b

0
.

predictions such as the likelihood of an adverse outcome
following an operation. The original binary ARTMAP [34]
incorporates two ART 1 modules, and , that
are linked by amap field (Fig. 2). At the map field
the network forms associations between categories via outstar
learning and triggers search, via the ARTMAP match tracking
rule, when a training set input fails to make a correct predic-
tion. Match tracking increases the vigilance parameter

in response to a predictive error at . Fuzzy
ARTMAP [35] substitutes fuzzy ART for ART 1.

Many applications of supervised learning systems such
as ARTMAP are classification problems, where the trained
system tries to predict a correct category given a test set
input vector. A prediction might be a single category or
distributed as a set of scores or probabilities. The fuzzy
ARTMAP algorithm below outlines a procedure for applying
fuzzy ART learning and prediction to this problem, which
does not require the full architecture (Fig. 4). In the
algorithm an input learns to predict an
outcome . A classification problem would
set one component during training, placing an input

in class .
Note that the fuzzy ARTMAP algorithm allows a small

match-tracking parameter to be either positive or negative.
Compared to the original match tracking algorithm, which
allowed only positive values , a negative value
of can facilitate prediction with sparse or incon-
sistent data and improve memory compression without loss
of accuracy, and the resulting algorithm is actually a better
approximation of the full ARTMAP differential equations [39].

A. Fuzzy ARTMAP Training

During training, input pairs
are presented for equal time intervals. Each

input is complement coded, with
, and , so that . The output
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is normalized to , corresponding to a category
probability distribution. During testing, search may occur, if
the baseline vigilance parameter is positive. Once a chosen

node meets the matching criterion, the predicted
outcome probability distribution is the weight
vector , normalized to 1 at .

1) Variables:

STM activation LTM weights
— (matching) —
— (coding) —
— (map field)

signals
—Phasic — committed nodes
—Tonic — vigilance
—Total

2) Signal Rule: Define the signal function
, where and for

and .
E.g.,

with (choice-by-difference) or

with (Weber law)

The phasic signal component equals and

the tonic signal component equals .
3) Notation

Minimum—

4) Parameters

Number of input components—
Number of coding nodes—
Number of output components—
Signal rule parameters—E.g., , (choice-by-
difference) or (Weber law)
Learning rate— , with for fast learning
Baseline vigilance — , with for
maximal code compression
Map field vigilance— , with for
maximal output separation
Match tracking—, with small.

order constants—
, with all .

5) First Iteration:

weights—

weights—

Number of committed nodes—
Signal to uncommitted nodes—

vigilance—

Input—
if
if

Output—

6) Reset: New STM steady state at and

Choose a category—Let be the index of the node
with maximal input , i.e.,

Number of committed nodes—If , increase by

activation—

7) MTM: signal is refractory on the time scale
of search

8) Reset or Prediction: Check the matching criterion

If , go to 6) Reset
If , go to 9) Prediction

9) Prediction:

activation—

10) Match tracking or resonance: Check the matching
criterion

If , go to 11) Match tracking
If , go to 12) Resonance

11) Match tracking: Raise to the point of reset

Go to 6) Reset

12) Resonance: New LTM weights on the time scale of
learning

Old weights—

Decrease weights—

Decrease weights—

vigilance recovery—

13) Next iteration:

Increase by 1

New input—
if
if

New output—
New activation—
New signal to committed nodes

Phasic—

Tonic—
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Fig. 5. During ARTMAP testing, an inputa activates theJ th F2 category
node. The map field weightswJk then form a prediction vectorz, which
may be distributed. The network computes classification probabilities, with
jbj = 1, at the output fieldF b

0
.

Total—

Signal rule)

Go to (6) Reset

B. Fuzzy ARTMAP Testing

During ARTMAP testing (Fig. 5), categorization
weights and prediction weights are fixed.
A test-set input chooses an category , possibly
following search, if . Map field activation then
equals the weight vector ,
and the output vector equals this vector normalized to 1.
With fast learning when represents single output classes
during training, only one weight is positive and only one
component of is positive, corresponding to prediction of the
single output class . If is distributed during training
or if learning is slow, may represent a probability vector,
distributed across output classes.

ARTMAP fast learning typically leads to different adaptive
weights and recognition categories for different orderings of a
given training set, even when the overall predictive accuracy
of each such trained network is similar. The different category
structures cause the location of test set inputs where errors
occur to vary as the training set input orderings vary. A voting
strategy uses several ARTMAP systems that are separately
trained on one input set with different orderings. The final
prediction for a given test set item is the one made by the
largest number of networks in a voting “committee.” Since
the set of items making erroneous predictions varies from one
ordering to the next, voting serves both to cancel many of
the errors and to assign confidence estimates to competing
predictions. A committee of about five voters has proved
suitable in many examples, and the marginal benefits of voting
are most apparent when the number of training samples is
limited.

For voting, ARTMAP generates a set of prediction vectors
for each of the trained networks produced by several different
orderings of the training set inputs. The voting networks may
average their output vectorsfor each input ; or each voting
network may choose one output class, with the predicted class
being the one that receives the most votes.

1) Test set input:

Input—
if
if

2) signal:

Phasic—

Tonic—

Total—

(Signal rule)

3) category choice:

Let be the index of the node with maximal input
, i.e.,

4) Output prediction:

VI. REMOTE SENSING PROTOTYPE EXAMPLE

A simplified remote sensing classification problem illus-
trates fuzzy ARTMAP dynamics and also serves as a prototype
for the remote sensing tests described in Section VIII. The
prototype task is learning to identify one of three CALVEG
[40] vegetation classes (mixed conifer, coast live oak, south-
ern mixed chaparral) for sites at which two spectral values
(Landsat TM 1 and 4) are known at each pixel. The prototype
example is based on a data set collected at the Cleveland
National Forest. Larger scale tests on this data set (Section
VIII) predict 8 possible vegetation classes with inputs of up
to 6 TM bands and 7 ancillary variables. In this more realistic
setting, fuzzy ARTMAP performance is compared with that
of maximum likelihood [41], [42], K Nearest Neighbor [43],
and back propagation [21], [22]. However, first reducing the
number of input dimensions to two (TM bands) and the
number of output classes to three (vegetation classes) will
allow visual illustration of fuzzy ARTMAP dynamics (Section
VII).

The data set for the prototype remote sensing problem
reports the vegetation class for each of 50 sites: 16 mixed
conifer, 25 coast live oak, and nine southern mixed chaparral
[Table I(A)]. The sites vary in size, averaging about 90 pixels
each. Landsat spectral bands TM1 and TM4 constitute the
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TABLE I
PROTOTYPE REMOTE SENSING TESTS

data set input for each pixel, with values scaled to the interval
. Before training, 10 sites, representative of the vegetation

class mix, are reserved as a test set. No pixels from these sites
are used during training. The goal is to predict the correct
vegetation class label for each of the 10 test set sites.

During training and testing, a given pixel corresponds to an
input , where is the value of TM1 and

is the value of TM4 at that pixel. The corresponding
input vector represents the CALVEG vegetation class of the
pixel’s site

mixed conifer
coast live oak
southern mixed chaparral

(26)

During training, vector informs the ARTMAP network
of the vegetation class to which the pixel’s site belongs.
This supervised learning process allows adaptive weights to
encode the correct association betweenand . Tests below
examine the effect of training set size on predictive accuracy
[Table I(B)]. To generate a training set of a given size, pixels
are selected at random from the entire training set, which
represents approximately 3600 pixels in 40 sites. Other tests
show how voting can improve predictive accuracy [Table
I(C)].

Fig. 6. Prototype remote sensing inputs. Each point shows the scaled Landsat
spectral band componentsa1 (TM1—blue) anda2 (TM4—near infrared) of
theARTa input vectora. Points� are found in mixed conifer sites, points
+ are found in coast live oak sites, and points / are found in southern mixed
chaparral sites. Data set values are taken from the Cleveland National Forest.

During testing, each test set pixel predicts a class, given
the spectral band input values and for that pixel.
Performance accuracy is measured both in terms of the percent
of pixels that are correct and in terms of the fraction of sites
that are correctly identified by a vote among pixels in the site.

VII. FUZZY ARTMAP PROTOTYPE TESTS

The prototype remote sensing tests illustrate fuzzy
ARTMAP dynamics by showing how the network learns to
make correct vegetation class predictions. Fig. 6 indicates
why the problem is difficult: of the 4436 pixels in the data
set [Table I(A)], many share spectral band values within and
between the three vegetation classes, and the three classes
are not linearly separable. In fact the problem proved to be
too difficult for an elementary back propagation network to
make accurate predictions (Section D).

During the initial learning phase, pixels are selected one
at a time, at random, from the 40 training set sites. Fuzzy
ARTMAP is trained incrementally, with each TM band vector
a presented just once. Following a search, if necessary, the
network selects an category by activating an node

for the input pixel, then learns to associate categorywith
the vegetation class of the site in which the pixel is
located. With fast learning, the class prediction of each
category is permanent. If some inputwith a different class
prediction later selects this category, match tracking will raise

vigilance just enough to trigger a search for a different
category. In all prototype tests, (conservative

limit—Section II-A), (fast learning—Section III-F), and
(maximal code compression). The map field vigilance

can have an arbitrary value between 0 and 1, since with
fast learning and binary predictions the map field registers
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(a) (b)

(c) (d)

(e) (f)

Fig. 7. Prototype remote sensing example: Fuzzy ARTMAP incremental
learning in response to the first six training set points. Inputs 1(a), 2(b), and
4(d) are from mixed conifer sites (o) and inputs 3(c), 5(e), and 6(f) are from
coast live oak sites(+). After learning, inputs 1 and 2 have established the
ARTa categoryJ = 1, which maps to mixed conifer; inputs 3, 5, and 6 have
established categoryJ = 2, which maps to coast live oak; and input 4 has
established the point categoryJ = 3, which maps to mixed conifer. Southern
mixed chaparral, with sites that include less than 8% of the pixels, happened
not to be represented among the first six inputs, which were selected at random.

either a perfect match or a complete mismatch
.

A. Incremental Learning by the First Six Inputs

Fig. 7 illustrates fuzzy ARTMAP learning in response to
the first six training set inputs, selected at random from the
40 training set sites. Input 1 [Fig. 7(a)] represents a pixel
that has a low TM1 value and a high TM4 value
and that is found at a mixed conifer site . Input selects
the uncommitted node (Section III-B). During
learning, all weights from this node to the map field
(Fig. 2) decay to 0 except for the weight to the node
representing the correct vegetation class . Category

appears as the point box .

Input 2 [Fig. 7(b)] also selects category . At the start
of each input presentation, the vigilance equals the
baseline vigilance , which here equals. Therefore, meets
the matching criterion (Section III-E), so category

remains active and predicts, via the map field, that this new
input is also from a mixed conifer site. Since this prediction
is correct, field registers a perfect match and
so meets the map field matching criterion. During learning the
category box expands to include input point 2.

Input 3, from a coast live oak site , requires match
tracking and search to learn the correct prediction, as follows
[Fig. 7(c)]. This input first selects category . Again,
since accepts the new input into this
category long enough to predict mixed conifer. However, the
network now detects a predictive error, since the incorrect
prediction sends the activity of all map field nodes to 0.
Match tracking increases just enough to reset , where
a new node becomes active. Since uncommitted nodes
meet the matching criterion for any, node remains
active, establishing the point box , which henceforth will
predict coast live oak .

Input 4, again from a mixed conifer site, shows how
match tracking can create more than one box for each class.
This feature allows ARTMAP to learn a set of decision rules
of arbitrary complexity while minimizing predictive error. For
example, concentric rings in an input space could be mapped
to alternating category predictions. At the same time, setting
equal to 0 allows the network to maximize code compression,
creating a new category only in response to a predictive error.
Design principles that balance the two goals—minimum er-
ror, maximum compression—allow ARTMAP to learn correct
predictions for a small category of rare cases embedded in
a large category of common cases. Input 4 [Fig. 7(d)] first
selects the point category , which maximizes the
choice function (2). Since this category predicts coast live
oak, the map field registers a mismatch, which sends a match
tracking signal to . This raises until it is just above the
match ratio (Section V), where is
the complement coded input to (Section III-A). The next
category that will be able to resonate, and so remain active
long enough to make a class prediction, must now meet the
stricter matching criterion imposed by the new, higher
vigilance . Geometrically (Section IV), once node
leads to match tracking, a new active categorywill now meet
the matching criterion only if the expanded box
would besmaller than , where is the current input.
After match tracking, input 4 next selects category
(which actually would have made the correct prediction), but
this category fails to meet the matching criterion, since
the box would have been larger than . The
input therefore also resets node . then activates the
uncommitted node , which learns to predict mixed
conifer .

Input 5 [Fig. 7(e)] selects category node , which
correctly predicts coast live oak , so no match tracking
or search is invoked. During learning, as the weight
vector adapts according to (11), the box expands to

, where represents the TM values of input 5. Since
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, the size of is unrestricted. Finally, input 6
[Fig. 7(f)] selects and further expands box. Weights remain
unchanged during learning only if is inside a selected box
that has already learned to make the correct prediction. As
training proceeds, category boxes cover more of the input
space, so the case where weights remain unchanged during
learning occurs increasingly often. If a finite input set is
presented repeatedly, all training set inputs learn to predict
with 100% accuracy, provided that the set of input predictions
is consistent, i.e., that no two identical inputsmake the
same vegetation class prediction.

B. Predictions of the Trained ARTMAP Network

As incremental learning proceeds, fuzzy ARTMAP creates
a set of overlapping category boxes, each predicting one of
the three vegetation classes. By the time 100 training set pixel
inputs have been selected at random from the 40 training set
sites, fuzzy ARTMAP has created eight categories [Table I(B)].
Three of these categories predict mixed conifer, four predict
coast live oak, and one predicts southern mixed chaparral.
The 10 test set sites contain a total of 1108 pixels. After
training on the first 100 inputs, network performance at this
stage of learning was first measured by the number of correct
vegetation class predictions the test set pixels were able to
make. For each test set pixel, the TM band vectorselects
one of the eight ART categories, then predicts that its site
belongs to the vegetation class associated with that category.
After training on just 100 input points, 85.9% of the test
set pixels correctly predicted the vegetation classes of their
sites. A second performance measure examined the number of
test set sites that would be correctly classified. This method
counts the number of pixels in each site that predict each
vegetation class, then selects the class chosen by the most
pixels. At this stage of learning, having used only 3% of the
training set pixels, eight of the 10 test site vegetation classes
were correctly identified. In this case, too few southern mixed
chaparral exemplars had been presented for that class to easily
win a majority at any site.

As the number of training set inputs increased, the pixel-
level predictive accuracy increased only marginally, even
decreasing transiently as the number of training set inputs
increased from 100 to 500 [Table I(B)]. After presentation
of all 3328 training set pixels, 89.3% of the test set pixels
correctly predict the vegetation class of their site. However,
site-level prediction improves steadily to 9/10 test set sites,
after training on 500 inputs; and 10/10 sites, after training on
2000 inputs or on the full training set. This result highlights
the observation that the pixel is often too small and noisy a
unit to make an accurate prediction. However, a group of noisy
pixel-level results can be pooled to form accurate mappings
across functional regions or sites.

C. Voting

A typical characteristic of fast learning is dependence of
category structure upon the order of training set input pre-
sentation. For example, suppose that two fuzzy ARTMAP
networks learn from a common input set that is presented in

two different orders during training. The two networks might
then each correctly predict 90% of the test set inputs, despite
the fact that the two have significantly different internal input
grouping rules, or category boxes, at . In particular,
the test set inputs that the first network identifies correctly
are typically different from those that the second network
identifies correctly, despite the fact that both were trained
on the same input set with the same network parameters.
ARTMAP voting uses this order dependence to advantage
to improve and stabilize overall predictive performance, as
follows.

Fig. 8(a)–(e) illustrates the decision regions of the prototype
remote sensing example after presentation of all 3328 training
set inputs (Table 1-C). A decision region plot shows predic-
tions all TM band inputs would make if presented to the
trained network. In Fig. 6, data set points from mixed conifer
sites are represented by a circle, points from coast live oak
sites by a plus , and points from southern mixed chaparral
sites by a slash . The same marks indicate vegetation class
predictions made by a network in response to spectral value
inputs across the unit square. The rough decision boundaries
reflect the ambiguous predictions in the corresponding portion
of the data set.

Fig. 8(a)–(e) and Table I(C) show how network predictions
can vary as a function of input order. Each of these five tests
uses the same training set, presented in different, randomly
chosen, orders. Decision boundaries vary, as do the number
of categories (from 126 to 153), the number of correct
test set pixels (from 84.8% to 89.4%), and the number of
correct test set site identifications (from 8/10 to 10/10). Before
knowing the test set answers, it would be difficult to decide
which of these five networks would be the most accurate on
novel data. ARTMAP voting chooses for each pixel the class
prediction chosen by the largest number of the five “voting
committee” networks. The size of each vote also provides a
measure of confidence in each decision. Confidence is typically
lowest near decision boundaries. Fig. 8(f) indicates how voting
can smooth and stabilize decision boundaries. In addition,
pixel-level performance on the voting network (91.0%) is
better than that of any individual trained network, and site-
level prediction is perfect (10/10).

D. Back Propagation Tests

An elementary back propagation neural network did not per-
form well on the prototype remote sensing problem. Networks
were trained using a variety of parameters, initial conditions,
and numbers of hidden units. In all cases, back propagation
was unable to make correct predictions for the southern mixed
chaparral sites. The most successful network used 10 hidden
units, a learning rate of 0.3, and a momentum rate of 0.4.
After presentation of the full training set, this system correctly
identified the vegetation class of just 75% of the test set
pixels. Site-level prediction was correct for the seven mixed
conifer and coast live oak training set sites. However, all
three southern mixed chaparral sites were wrongly identified,
evidently because these “rare cases” were averaged away
among the more common exemplars. On the other hand,
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(a) (b)

(c) (d)

(e) (f)

Fig. 8. Prototype remote sensing example: Fuzzy ARTMAP voting. (a)–(e)
Fuzzy ARTMAP networks trained on a common set of 3328 inputs presented
in five different, random orders show variations in decision region geometry.
Points marked by a circle(�) predict mixed conifer, points marked by a plus
(+) predict coast live oak, and points marked by a slash(=) predict southern
mixed chaparral. Pixel-level predictive accuracy ranges from (e) 84.8% to (d)
89.4% while site-level predictive accuracy ranges from (e) 8/10 to (a) [Table
I(C)] 10/10. (f) Voting across the five trained networks boosts pixel-level
accuracy to 91.0% and site-level accuracy to 10/10. Blank spaces indicate a
2-2-1 tie among the voters.

sophisticated variations of the back propagation algorithm that
have recently been developed might improve performance.

VIII. R EMOTE SENSING TESTS

Tests in this section show how fuzzy ARTMAP perfor-
mance on the Cleveland Forest data set compares to that
of standard maximum likelihood methods [42]. Voting im-
proves ARTMAP predictive success, and both systems benefit
from appropriate selection of input variables and predictive
confidence thresholds. Best results are obtained by a hybrid
system based on a convex combination of fuzzy ARTMAP and
maximum likelihood predictions. As in the ARTMAP voting
process (Section VII-C), hybrid prediction takes advantage of

TABLE II
REMOTE SENSING DATA SET

the fact that fuzzy ARTMAP and maximum likelihood tend to
make errors under somewhat different circumstances.

A. Cleveland National Forest Test Stand Data

The test stands from the Cleveland National Forest identify
the CALVEG vegetation class for 209 sites. The full data
set represents 17 vegetation classes. The primary goal of this
study was to develop and compare automated classification
methods for large-scale remote sensing applications. In order
to focus on the methods, the selected prediction problem could
not be too easy, but neither could it be dominated by noise
or chance. The test data set examined here thus excludes
vegetation classes represented by only a few sites, leaving
eight vegetation classes and 163 sites (Table II). The prediction
problem remains challenging and realistic: the pixel-based
(25 25 m) remotely sensed data are typically noisy and
unreliable; the number of training set sites (143) is small
relative to the number of classes (eight); some of the vegetation
classes, such as the three different types of oak, are likely to
have similar features; and the actual vegetation at each site,
where sites range in size from 9 to 610 pixels (5625–381 250
m2), is, in all likelihood, not a pure sample of just one class.

B. Input Variable Combinations

For each pixel, the Cleveland Forest data set provides six
Landsat Thematic Mapper (TM) band values, three linear com-
binations of the TM band values, and four terrain variables.
The three linear combinations of TM1-5&7 reflect brightness
(B), greenness (G), and wetness (W) [44]. The four terrain
variables—slope (SL), aspect (A), shade (SH), and elevation
(E)—were derived from digital elevation models, warped to
fit the Landsat image [16], [20], [45].

Tests in this section focus primarily on fuzzy ARTMAP
and maximum likelihood performance on data sets for which
input provides only the six TM values (combo 1) and
on data sets for which provides all 13 input variables
(combo 2) (Table III). On tests that use each of these input
variable combinations, basic fuzzy ARTMAP and maximum
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TABLE III
TEST RESULTS

likelihood [Table III(A)] have similar predictive accuracies:
approximately 45–46% with the six TM input variables and
54–57% with all 13 variables. On data sets that provide
various subsets of the 13 input variables, performance of the
two systems can differ significantly. For example, when pixel
inputs provide only the three linear combinations B, G, W
(combo 3), maximum likelihood performance drops to 40%
while fuzzy ARTMAP performance increases to 48%.

The patterns in the results of maximum likelihood classifi-
cation as a function of inputs are consistent with past expe-
rience in remote sensing. Raw spectral bands have frequently
produced better results than transforms such as brightness,
greenness, and wetness. Similarly, combining the linearly
transformed variables brightness, greenness, and wetness with
the original spectral bands yields no improvement (combo 6).

The results of fuzzy ARTMAP classification are strikingly
different, with the brightness, greenness, and wetness trans-
forms resulting in better performance than the original spectral
bands (combo 3). Even more divergent from maximum likeli-
hood is the improved performance when fuzzy ARTMAP uses
both the six spectral bands and the three linear transforms of
the spectral band variables. In fact, one of the most interesting
results of these tests is the increase in fuzzy ARTMAP

performance from 44.7% to 51.9% when linear transforms
are combined with the original spectral band inputs (combo
6). This result is in direct contrast with statistically-based
classifiers. It also emphasizes the importance of selection of
input features and suggests that performance might be further
enhanced by other unknown transforms. On the other hand,
ancillary variables have similar effects on maximum likelihood
and fuzzy ARTMAP performance.

The first tests described here use a basic fuzzy ARTMAP
network to predict the eight vegetation classes. Test procedures
are like those of the prototype problem (Section VII-B), except
that the prototype used only two spectral band values to predict
three of the vegetation classes. As in the prototype tests,
baseline vigilance (maximal compression), (con-
servative limit), and (fast learning), and there is only
one voter. Learning is incremental, with each input presented
once. During testing, classification accuracy is measured by
site, with a site’s vegetation class predicted to be the one
chosen by the largest number of pixels. For sites at which
ties occur, the number of correct classifications is counted at
chance. In each test, the training set data represent 143 sites,
with the remaining 20 sites providing the test set. In order to
check for sampling bias in the test set selection, five different
tests sets, each with 20 sites, were compared across multiple
tests, with fuzzy ARTMAP and maximum likelihood using the
same training and test sets. In addition, fuzzy ARTMAP was
run with 35 different orderings of each training set, since input
order could affect results by 1–2%.

C. K Nearest Neighbor and Back Propagation Tests

The K Nearest Neighbor (KNN) algorithm [43] was also
tested on the six variable and 13 variable input sets [Table
III(B)]. Predictive accuracy was similar to that of fuzzy
ARTMAP and maximum likelihood, varying somewhat with
the number of neighbors (K) chosen during testing. However,
KNN needs to store all training set pixel vectors (approxi-
mately 10 000), while fuzzy ARTMAP compresses memory
by a factor of 8 for combo 1, creating about 1200
categories during learning. Remarkably, using all 13 input
variables, the average number of categories drops to
208, giving a compression ratio of 48:1 compared to KNN.

Although the back propagation neural network has been
applied successfully to remote sensing classification problems
(e.g., [46]), performance of an elementary back propagation
system was not satisfactory on the present remote sensing
problem. On combo 1, with TM1-5&7 as inputs, correct
prediction rates ranged from 22% to 46% as the number of
hidden units ranged from 15 to 60. The best test set prediction
rate, obtained using 30 hidden units, was comparable to the
average performance rates of maximum likelihood, KNN,
and fuzzy ARTMAP. For this test, back propagation had
a learning rate of 0.3 and momentum equal to 0.4, and
each case was repeated 5 times, varying the set of initial
weights. On the 13-variable input set (combo 2), the best
back propagation performance was worse than the average
performance of ARTMAP, maximum likelihood, and KNN:
with 50 hidden units, a learning rate of 0.6, and momentum
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equal to 0.4, performance accuracy reached a maximum of
47.1% at the pixel level and 50% at the site level. Even
with over 100 000 input presentations and 212 min of CPU
time on a Sun 4 Sparc Station, weights did not converge
during training. At lower learning rates, with CPU times
exceeding 1000 min, back propagation’s predictive accuracy
was less than 27%. In general, back propagation requires slow
learning and many presentations of each input, while fuzzy
ARTMAP learning is fast and incremental, or “on-line.” In
addition, choosing the number of hidden units and optimizing
the architecture typically require extensive simulation studies.
Fuzzy ARTMAP is thus particularly well suited to ongoing
training in situations where new information continues to ar-
rive during use. Again, however, sophisticated application of a
back propagation variant may have shown better performance.

D. Rejecting Low-Confidence Predictions

In the tests described in Section B, basic fuzzy ARTMAP
and maximum likelihood systems make a vegetation class
prediction for each pixel input, even if there is no good match
between an input and any learned class. Performance accuracy
of both classifiers can be boosted by adding a confidence
threshold. Then, when confidence in a prediction is low, the
corresponding test set pixel is labeled “inconclusive” and does
not participate in the site-level vegetation class decision.

For fuzzy ARTMAP the matching criterion imposed by the
baseline vigilance provides a natural confidence threshold
(Section V). During training, some category boxes may
grow large, since is set equal to in order to maximize code
compression. During testing, remains equal to . Setting

imposes a minimum matching criterion before a
chosen category is allowed to remain active and make a
prediction. Geometrically, a prediction requires that the size of
the expanded box would be no greater than
(25), where is the number of input variables. In particular,
if is already larger than then any pixel that
first chooses category during testing will be regarded as
inconclusive. Maximum likelihood computes a discriminant
function value (DFV) for each vegetation class, given a pixel
input. A confidence threshold (CT) checks that the maximal
DFV of a pixel is greater than CT before that pixel may
participate in a site-level prediction.

Choosing an optimal confidence threshold for a given test
set would require prior knowledge of the test set inputs.
However, a useful range of (fuzzy ARTMAP) or CT
(maximum likelihood) values can be estimated by reserving a
randomly chosen portion of the training set as a “verification
set.” Before training on these inputs, tests would estimate a
predictive confidence threshold that gives good performance
on this subset. During testing, then, the threshold would be
fixed at the selected value. The verification set procedure was
used to obtain values. The same method could have been
used to select maximum likelihood CT values. However, the
CT was here chosen simply to optimize maximum likelihood
test set performance.

Fuzzy ARTMAP results were found to be fairly constant
across wide intervals. Moderate threshold levels boosted per-

formance somewhat when training produced many categories,
as in the six variable tests (combo 1), which average 1203
categories [Table III(C)]. As the threshold increases, at some
point performance tends to increase for a short interval, then
drop steeply, when the threshold is set so high that many useful
predictions are discarded. With both combo 1 and combo 2,
maximum likelihood performance shows a similar trend as the
confidence threshold increases. In contrast, on the 13-variable
input set (combo 2), where fuzzy ARTMAP produces only
208 categories, setting gives optimal performance, and
performance begins to drop significantly for .

E. Site-Level Voting

Table I indicates how ARTMAP voting, where voters decide
on a prediction for each pixel, can boost performance by 3–4%
on the prototype example. For mapping problems, however,
a site or region fixes a more appropriate measurement scale
than individual pixels. On the large-scale remote sensing tests
in this section, voting at the site level, rather than the pixel
level, proved to be the more successful method. For site-level
voting, a number of fuzzy ARTMAP networks are trained on
a given input set, each with the inputs presented in a different
randomly chosen order. Each voter then predicts the vegetation
class of each test set site, as in Section B. Finally, then, the
class prediction for each site is taken to be the one made by
the largest number of voters.

Site-level voting improves fuzzy ARTMAP performance on
a variety of six variable (combo 1) tests, provided that low-
confidence predictions are ruled inconclusive [Table III(C)].
Setting increases individual network performance
from 44.7% to 46.4%, and voting further increases perfor-
mance to 48.6%. When is larger than 0.9 the confidence
threshold is too high. For , individual test set
performance falls to 42%, then to 29% for . Notably,
voting performance remains at 50% even for , where
individual network performance drops to 42%. Evidently,
when becomes too large for an individual network, which
would then label too many pixels as inconclusive, a number
of voters can pool predictions to maintain accuracy. Thus,
choosing an appropriate confidence thresholdand using a
voting strategy appear to be mutually beneficial.

On 13 variable tests (combo 2) with , voters
improve fuzzy ARTMAP performance to 60.0%, compared to
an individual network average of 57.2%. Adding more voters
usually had little effect on results. Since maximum likelihood
computes order-independent parameters, this technique has no
analogue of ARTMAP voting. Site-level voting thus widens
the accuracy gap between maximum likelihood (56.5%) and
fuzzy ARTMAP (60.0%).

F. Hybrid Fuzzy ARTMAP—Maximum
Likelihood Classification System

The system variation with the best performance combines
the predictions of trained fuzzy ARTMAP and maximum
likelihood systems. The success of this method is due to the
observation that the two classifiers tend to make predictive
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TABLE IV
CONFUSION MATRICES: SIX VARIABLE TESTS

errors in somewhat different circumstances. Confusion matri-
ces (Tables IV and V) compare fuzzy ARTMAP and maximum
likelihood predictions with test set ground truth classifications.
For example, in combo 1 tests (six variables), fuzzy ARTMAP
[Table IV(A)] makes more errors trying to identify red shanks
sites than does maximum likelihood [Table IV(B)]. Both

classifiers do well on mixed conifer sites, but both do poorly
on canyon live oak and northern mixed chaparral. An ideal
hybrid system would choose the right decision when the two
disagree, but designing such an optimal combination for a
given problem would again requirea priori knowledge of
the test set. Of a variety of hybrid algorithms tested, all
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TABLE V
CONFUSION MATRICES: 13 VARIABLE TESTS

showed some improvement over that of the individual systems.
The hybrid that consistently gave best results took a convex
combination of the two systems’ site-level predictions, as
follows.

To select from the eight vegetation classes, maximum like-
lihood generates a prediction for each of the pixels in a

site. Those pixels for which a definitive prediction is made
(i.e., not an “inconclusive” response) can form a vector with
components equal to the fraction of definitive pixels in that
site assigned to each of the eight classes. An analogous
prediction vector for fuzzy ARTMAP lists the fraction of
voters choosing each class. A convex combination of the two
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vectors, giving weight to fuzzy ARTMAP and to
maximum likelihood, forms the hybrid prediction vector.

To test performance improvement of a hybrid, fuzzy
ARTMAP and maximum likelihood systems were chosen
to maximize individual system performance accuracy. For
combo 1, fuzzy ARTMAP with five voters and
gave 48.6% correct predictions, while maximum likelihood
with was 48.8% correct [Table III(C)]. A
convex-combination hybrid with , which gives 60%
weight to fuzzy ARTMAP, improved test set performance to
50.6%. With , which gives 60% weight to maximum
likelihood, performance was almost as high (50.4%). With

, the hybrid system allows maximum likelihood
predictions of red shanks and southern mixed chaparral sites
to dominate the distributed (and largely incorrect) fuzzy
ARTMAP predictions for these classes [Table IV(C)]. For
coast live oak sites and northern mixed chaparral, fuzzy
ARTMAP compensates for a number of the maximum
likelihood errors. At canyon live oak sites, where the two
systems make the same errors, hybrid prediction is no better.

For combo 2, fuzzy ARTMAP with five voters and
gave 60.0% correct predictions, while maximum likelihood
with was 56.5% correct (Table III-C). Since
optimal performance of the two systems now differs by
3.5%, some hybrids do not give better predictions than fuzzy
ARTMAP alone. Nevertheless, a convex combination with

again gave the best performance, boosting accuracy to
61.1%. However, giving 60% weight to maximum likelihood

brought performance back down to the level
of maximum likelihood alone. On combo 2, with all 13
input variables, fuzzy ARTMAP performance on the difficult
northern mixed chaparral class is greatly improved [Table
V(A)]. Maximum likelihood shows less improvement [Table
V(B)], and predictions of the convex combination fall between
the two [Table V(C)].

IX. CONCLUSION

This paper provides an introduction to the fuzzy ARTMAP
neural network in the context of remote sensing classification
problems. Tests on a prototype remote sensing problem and
an actual vegetation mapping problem illustrate a number of
points. First, a voting strategy improves prediction by training
several fuzzy ARTMAP networks on different orderings of
an input set. This strategy assigns confidence estimates to
competing predictions. Second, fuzzy ARTMAP and maxi-
mum likelihood perform differently for different combinations
of input variables. Fuzzy ARTMAP performance increases
using brightness, greenness, and wetness as compared to the
original spectral bands, and increases even more when these
are combined. Ancillary inputs improve maximum likelihood
and fuzzy ARTMAP by similar amounts. Third, a hybrid fuzzy
ARTMAP and maximum likelihood classification system can
improve overall predictive accuracy since the two classifiers
tend to make somewhat different predictive errors. Fourth,
results from a group of pixels pooled together form accurate
mappings across functional regions or sites, and site-level
predictions are more useful than pixel-level predictions.
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